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Abstract—In this paper, the splitting midpoint rule is presented and proved to be the Lie-Poisson
integrators to the rigid body systems. Further discussions are also given. Numerical experiments show
that this method has well properties comparing with the Runge Kutta method and ordinary midpoint
rule.
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1. INTRODUCTION

It becomes more and more important to construct the structure-preserving integrators for solving
dynamical systems. The Symplectic algorithms of canonical Hamiltonian structure—symplectic
structure—are well discussed in many publications. In [1-3], the Poisson schemes for linear Pois-
son systems have been discussed by several authors. However, for the noncanonical Hamiltonian
system—Lie-Poisson system—which exists in rigid body dynamics, celestial mechanics, robotics
and biomechanics etc., the theory and algorithm is very rare. Ge-Marsden’s [4] generating func-
tion methods for the Lie-Poisson system are proved by the author [5] to be unappealing and to
only construct a first-order Poisson integrator. The Andersen’s constrained algorithm (see [6])
is a good way toward the problems. But it is only practical when the constrained system can
be splitting. Maclachlan [7] has brought forward an explicit Lie-Poisson integrator to a kind of
splitting Lie-Poisson system. This algorithm must compute the exact solution at each splitting
step and evaluate the €%, which is very time consuming especially when a is large.

The rigid body is a typical Lie-Poisson system. It can also be splitting. Some algorithms have
been given. Simo et al. [8] proposed an energy and momentum preserving algorithm. Austin
et al. [2] gave an almost Poisson integration. All these methods cannot be Lie-Poisson integrators.
In this paper, the midpoint rule is proved to be a Lie-Poisson integrator to the splitting system,
and using the composition methods, Lie-Poisson integrators can be easily constructed. Taking the
free rigid body as an example, we present the sufficient and necessary condition for Lie-Poisson
integrators among generalized Euler rules. As to heavy top, we proved that the midpoint rule
also is a Lie-Poisson integrator. These algorithms can also be changed into momentum-preserving
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(see [9]). Numerical experiments show that it is also faster than other methods and has very good
energy preserving property.

2. A LIE-POISSON INTEGRATOR OF FREE RIGID BODY

A Lie-Poisson system has a phase space M = R™(z), Lie-Poisson bracket {F,G} = gﬂ% Jij g%,

where J;; = ijzk (with Ci"j the structure constants of a Lie algebra), and Hamiltonian H :
M — R. The dynamical system is

& ={z,H} =J(z)VH, (1)

s — dz
where £ = at -

THEOREM 1. The phase flow of equation (1), denoted by g%;, preserves the Poisson bracket; i.e.,
{Fogn,Gogy} ={F.G}ogh.

Consider now the difference schemes for the Lie-Poisson system (1), restricted mainly to the

case of single step schemes; time ¢t is discretized into ¢ = 0, £7, £27,..., 2(kT) = z*, each 2-lever

scheme is characterized by a transition operator relating the old and new state by 7 = g7z, z = z¥,

z = zFt!, gt = g, depend on t, H and the mode of discretization. It is natural and mandatory
to require g%; to be Poisson bracket-preserving, which we call the difference scheme — Poisson
scheme.

THEOREM 2. A difference scheme of system (1) is Poisson iff
0z oz\' _ . .
(55) J(z) (5;> = J(Z).

dF o gt dG o gt
ox; Jig(2) oz;

_OF (dg' 8¢\ G
= 3 (axi)‘]‘ﬂ(m)<axj " 3¢t
agt agt\T
- oo (35) e (5) -v6os

{F,G}og" = (VF)J(VG)(g") = (VF)og'J(¢")"(VH) o g".

PROOF.

{Fogt,G’og‘} =

By Theorem 1, we have

A free rigid body is the simplest and typical Lie-Poisson system. Many other complex Lie-
Poisson systems have the same form or property as the rigid body. When complex systems can
be split, the splitting system is often a rigid body. Therefore, it is very important to study the
algorithm of the rigid body system. The detail information about rigid body has been discussed
by the author in another paper [9]. Now, we take the rigid body as an example to construct the
Lie-Poisson integrator.

The dynamic equation for a free rigid body is

. SH
Ty 0 —I3 ) I
0 H
Io = T3 0 -T1 g?z ) (2)
T3 -T2 I 0 oH

2D
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where z = (z1,22,23)7 € R? is the angular momentum, H = (1/2){I "'z, z) is the Hamiltonian
and energy of the system. I is the symmetry definite positive inertia operator. A general form

of H is
H= Zbixf + Z bijziz; = Z a;z? + Zaij(mi + xj)z. (3)

It is very difficult to construct the Poisson schemes for system (2). It has been proved by
the author that the generalized Euler schemes and RK methods to system (2) are not Poisson
integrators. Using the reduction technique, a generating function method is discussed by several
authors [4,10]. However, as the author proved in another paper [5], the Ge-Marsden’s generating
function methods can only be one-order algorithms and cannot preserve the space angular mo-
mentum very well. New generating function methods must be found, but it is difficult. As pointed
out by Maclachlan and Scovel [6], the generating function method is very time-consuming. An
effective method for splitting systems is to construct the composition methods. As we know,
many Hamiltonian systems such as a free rigid body, a heavy top and sine-bracket truncation
of 2D Euler equations can be split, and in many cases, the splitting subsystems can be solved
analytically or reduced to a symplectic systems. In the following, we will give a method to SO(3)
systems.

For the motion of a rigid body fixed at its center of gravity, I~! is a diagonal matrix. Let

1
H= 3 (a12% + az23 + asz3) = Hy + Ha + Hs,

where H; = (1/2)a;z?.
Take one of the subsystems as an example:

—agX2x3
O0H,
P = L2 = 4
&= J(z) 5 o |, (4)
agzr1T2
where
0 —I3 X2
J)=1| =z3 0 -
—X2 It 0

This equation can be reduced to the following symplectic system:

1 = —asreT3,
(5)

T3 = aaT1T2,

where x5 is a constant.

There are a class of symplectic schemes for system (5). However, as we can see later, only a
small part of them are Poisson schemes for system (4).
THEOREM 3. The midpoint rule of (4) is Poisson.

In order to prove Theorem 3, we give the following lemma first.

LEMMA 1. For the reduced system (4), the symplectic algorithm of system (5) is Poisson iff the
following conditions are satisfied:

—Z11Z3 + T13T1 = —T3,
T3123 — T33T) = —71, (6)

Z12T) + T32T3 = 0,

where z; = 2}, T; = 271!, 2,5 = e
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PRrRoOF. By Theorem 2, the schemes are Poisson iff the following equation is satisfied:

%N @) (2 T:J(a).
(%)@ (5)

Expand the above equation

Ti1 T2 %13 0 -—-z3 = zi1 0 3 0 -T3 T
0 1 0 I3 0 —T1 T1n 1 32 = 53 0 —/il )
T3l T32 33 -T2 I 0 z13 0 =33 -y I 0
ie.,
0 —T11Z3 — T1321 a13 0 ~“z3 73
Z11T3 — L1371 0 T31%3 —233T1 | = | I3 0 -z {,
—ai3 Z33T1 — L3123 0 -3 I 0

where a13 = (21223 — T1322)Z31 + (213T1 — Z1173)T32 + (T11%2 — T1221)T33.
For the system (5), the scheme is symplectic. Thus,

—T13T31 + 11733 = 1,
and a3 can be simplified as
a13 = (T3r31 — T1T33)T12 + (T13T1 — T1123)T32 + T2.

Comparing the corresponding elements of matrices on both sides of the equation and using the
condition Tp = x2 gives
1123 — 21371 = T3,

3173 — T33T1 = —Z1,
L1271 + 73273 = 0,
just the same as equation (6).
Now, we prove Theorem 3 using Lemma 1.
ProoOF OF THEOREM 3. The midpoint rule for system (4) can be given by

~ T3+ 73

ry = — Tag—2—1‘2,
Ty = T,

~ T+ 1)
I3 =13+ Taz—T-—:Ez.

The Jacobi matrix is
T11 T2 T13
0 1 0 ,
T31 32 T33

where

-
znp=1- 50272731,

T . T
ZTig = —502@3 +x3) — 50232732,
T T
T13 = —502$33$2 - 502332,
T T
T3 = 5021‘11332 + 502%,
T T
T3p = 5@2(1‘1 + :1:1) + 50.21‘2,

r
z33 =1+ 50222713
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Solving the above equations, we have

- 1-a? 2a
= = — 5, T = —I = ——
11 33 1+ a2 13 31 1+ a2
T A
5023«'3 )
T = ———’ 7.1
12 1+ a2 (
Ta N
5a271
2
I3z = —,
27 + a2
where r
a = 50,2:1:2. (72)

Substituting equation (7.1) into the conditions (6), we can easily see that the conditions are
satisfied. Therefore, by Lemma, 1, the scheme is Poisson.

LEMMA 2. [11,12] Consider a dynamical system & = a(z). Supposing a admitted a decomposition
a =.ay+as+---+ax, we write g° ~ e} the phase flow of the dynamical system; then

s/2

of ~el, order 2¥i=s g% 0. g% 0 g/ %0 .. g/

~ p3
~e,, order2.

Using Lemma 2 and Theorem 3, we can easily construct the Lie-Poisson schemes. As noted by
Maclachlan [7], the less number of the splitting, the better. Using the Casimir C = |z|2, we can
see that ) . )

fAI =H - 50,10 = -2‘(0/2 - al)mg + —2-(0,3 - al)a:g =H, + Hy
has the same dynamic as H. Using H as the new Hamiltonian, the step number which the scheme
needs can be reduced.

For the symplectic system (5), the generalized Euler scheme

T=2+71JVH (BT + (1 - B)x)

is symplectic iff
B:%U+@, JC +C'J =0. 8)
It is natural to ask such questions as: among the symplectic schemes of system (5), which is the

Poisson scheme for system (4)? In the following derivation, we give a condition to the generalized
Euler schemes.

Let
o-(3 )
€3 ¢4
then by the symplectic condition (8), we have ¢4 = —¢;. So,
B— 1 (1 + Co )
2 C3 1- (&1
e 1 ((1+ )@ + (1 - 1)y +calFs — 73) | _ 1
~ +a)zr+ (1 —c)zy +ea(T3 — 73 z1
B 1-B)z2== ~ e = — . 9
2+( )z 2(c:;(:l:l—I1)+(1—01)I3+(1—01)1‘3) 2(23) ( )

The Euler difference scheme is R
ry =T —aes, (10 1)
T3 = I3 — az,

where a is defined by equation (7.2), and 21, z; is defined by equation (9).
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After computing, we have the Jacobi matrix of the algorithm and T3

_ (1+4ac3) (1 —acy) —a®(1 — e1)?

T - ]
1 (1+ac3) (1 —acz) +a® (1 —c3)
2oe = —2a (1 - acy)
B8 (1+acs) (1 —acy) +a® (1 -¢c3)’
R ((1+a03) (1—acy) —a?(1 —01)2) z3+2a(1 + acs) 71
I3 = .

(1 +ac3)(1 — ac2) + a®(1 — ¢?)
Solving the first equation of (6)
T11Z3 — T12T1 = T3,

we get
C = 0, Cy = —C3 (10.2)

for arbitrary real number z;, x3.
Substituting equation (10.2) into equation (10.1) and computing the Jacobi matrix again, we
have

- 22a(1 — acs)
a® 4+ (1 —acy)?’
L33 = (12— acy)? —a?)
a’+ (1 —ac)?’
5 (1 —ac2)® — a®) z1 ~ 2a(1 — aca)zs
1= .

a? + (1 — acg)?
We can easily see that equation (6),
T31T3 — T33T1 = —7T1,

is satisfied. Similarly, we can prove that another equation of (6) is satisfied as well.
Equation (10.2) means that C = ¢J, where

0 1
(5,
3. THE LIE-POISSON INTEGRATORS FOR HEAVY TOP

In Section 1, we discussed the Lie-Poisson integrators for a free rigid body, which is a Lie-
Poisson system on the dual space of semisimple Lie algebra. We now consider another kind of
Lie-Poisson system—heavy top—which is constructed on the semidirect product of Lie algebra
and linear space. The symmetric group for heavy top is three-dimensional Euclidean space E(3),
to which some important systems arising in hydrodynamics are also connected. On the phase
space of e*(3), there are 6 coordinates {z1, z2, z3,p1,p2,p3} and the Lie-Poisson brackets

{xiamj} = Eijkxk» {m’i,p‘i} = Sijkpk» {pz’pj} = Oy (11)

where

{ the signum of the permutation (4, j, k), if 1,7,k are all different,
Eijk =

0, if there is a pair of coinciding indiced i, 7, k.
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The bracket (11) possesses two independent Casimir functions fi = > p2, fo = 3 piz;.
Let H(z,p) be a Hamiltonian. Let us introduce the notation u; = %5‘:—_, w; = gf— The Lie-
Poisson equation will assume of “Kirchhoff’s equation”

p = [p,w], T = [z,w] + [p, u], (12)

where the square brackets denote the vector product. Equation (12) coincides (for quadratic
Hamiltonians H(z,p)) with Kirchhoff’s equations for the motion of a rigid body in a fluid which
is perfect, incompressible, and at rest at infinity. The energy H(z,p), quadratic in z,p and
positive definite, can be given in the form

20 = Zaimf + Z bij(pizj + ipj) + Z Ci;PiD; - (13.1)

For the heavy top (the details are discussed and properties of the heavy top can be seen in [12]),
the Hamiltonian has the reduced form

H@p) = 2L+ 224 55y vopyt (13.2)
b)) = of, " 2I, ' 2I, YiP1 + Y2P2 T+ Y3P3, .

where I; is defined as Section 2, and +y; are the coordinates of the center of mass.
The structure matrix for this Lie-Poisson system is

(J (z) J (p))
Jp) 0 )’
where J(z) is defined as in Section 2.

It is more difficult to construct Lie-Poisson integrators for heavy top than for free rigid body,
for the generating function methods are not valid in this case. As done to free rigid body, the Lie-
Poisson system for heavy top can also be split. So, using the composition methods and Lemma 2,
we can easily construct the Lie-Poisson integrator for heavy top.

Splitting the Hamiltonian as H = 3 H;, where

2

x: .

H;, = ﬁ, H;3 = vp;, fori =1,2,3,
1

we take Hy, Hy as examples to construct the Lie-Poisson algorithm for subsystems.

Figure 1. The orbit curve of the Lie-Poisson for Figure 2. The orbit curve of the RK4 for free rigid
free rigid body. body.
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Figure 3. The orbit curve of the MD for free rigid body.
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Figure 4. The energy curve of the LP method.
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Figure 5. The Casimir function curve of the LP method.
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560 10‘00 15'00 2000
Figure 6. The energy curve of RK4 method.
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Figure 7. The Casimir function curve of the RK4 method.

The equation for H; is

Expand this equation:

1 =0,
T — 3T
2 = I
La — T2
3 Il ) (14)
=0,
_ T1p3
D2 = Il 3
T1P2
BT

THEOREM 4. The midpoint rule for subsystem (14) is Poisson.

CAMWA 30-9-1
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560 10‘00 15‘00 2000
Figure 8. The energy curve comparison of LP-MD-RK4 methods.
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Figure 9. The Casimir curve comparison of LP-MD-RKA4 methods.

PRrOOF. By Theorem 2, to prove the midpoint rule for system (14) is Poisson iff to prove the
Jacobi matrix of transformation (z,p) — (Z, ) satisfy

gz gt % & P
oz op \(J(x) I\ (& 3\ _[JE JB
(gg gg)(m 0 )(g; gg)‘(ﬂm ) )

Let us denote the Jacobi matrix (%‘é) = ¥,. After expanding equation (15), we have

& J(@)3, = J(@).
T:J(2)D, + &I (0}, = J(B), {16)
Bed (2)P + Ppd (P)P, + Pat ()F), = 0.
Using the result of Section 2, it is easy to verify the first equation of (16). Note that

0 pa pa 10 0
Be=[0 0 0], Pp=1|0 pu pn
n

0 0 0
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Figure 10. The energy curve of the MD method.
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Figure 11. The Casimir function curve of the MD method.

~ —~

where pg; = g—@— P31 = %’;—3, Dij = g%; 1,7 = 2,3. After computation, we have

Ty’

P2z = T22, P23 = T23, P32 = I32,
0 _7p3/1i _ —71h2/h (17)
P33 = 33, P21 = 1+a2’ P31 q11a2 T

where a is defined by equation (7).

Substitute (17) into equation (16). The equation is satisfied. Therefore, we can say that the
midpoint rule for system (14) is Poisson.

It is easier to construct the Lie-Poisson integrator for the Hamiltonian Hy, for the equation is
turned into a constant equation.

4. FURTHER DISCUSSION ABOUT THE RIGID BODY

In Sections 2 and 3, we have given the Lie-Poisson integrators for the special cases of rigid
body. That is to say, we used the special Hamiltonian to construct the Lie-Poisson integrator. In
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Figure 12. The orbit curve of Lie-Poisson method for heavy top.

Figure 13. The orbit curve of Runge-Kutta 4 method for heavy top.

this section, we will give the Lie-Poisson integrator for the general form of Hamiltonian on rigid
body.

Using free rigid body as an example, the general form of Hamiltonian has been given by equa-
tion (3). So we only construct a Lie-Poisson integrator for the subsystem when the Hamiltonian
is Hyj = (1/2)a;;(z: + 25)°.

Consider the system
0H12

dr

i=J(x) (18)

It is easy to see that z; +x; is a Casimir function of equation (18). Expanding the equation gives
I —a12:l,‘3(331+:l:2)

o | = algilig(fl?l + Ta) . (19)
- 2 _ 2
z3 ar2(zs — x3)
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Since x; + x2 is constant, we denote ¢ = z; + z2. Equation (19) is turned into

T = —ca12Ts3,
I = CQ12T3, (20)

I3 = caiz(c — 2xq).

The last two equations of equation (20) can form the canonical equations on symplectic structure.
The midpoint rule for (20) is not a Lie-Poisson scheme. However, we can numerically solve
equation (20) explicitly, which, of course, is a Lie-Poisson integrator. Things are similar to the
Lie-Poisson system for heavy top.

As pointed out in the introduction, the above Lie-Poisson integrator can also be angular
momentum-preserving. See the author’s paper [9].

5. NUMERICAL EXPERIMENT AND CONCLUSION

Using the above algorithms, we have computed several examples. In Example 1, we consider the
motion of a free rigid body. In our numerical test, we first take the initial values z; = 0.5, 3 = 0.8,
z3 = 1.0, the inertia operators to be I; = 1., Iy = 2., I3 = 3. (In the following examples, we also
take this inertia operator.) The step length is 0.5 for Lie-Poisson and Midpoint methods and 0.1
for Runge-Kutta methods, the step number is 100000. Figures 1-3 give the orbit tracing of Lie-
Poisson (LP) method, 4-order Runge-Kutta (RK4) method and Midpoint rule (MD). We find that
the LP method is well orbit-preserving and the RK4 method is a poor orbit-preserving algorithm,
though its step length is smaller and accuracy order is higher. In Figures 4-11, we have given their
energy (i.e., the Hamiltonian of the system) function and Casimir function (f = /z% + 22 + 72)
curves and their comparison. From the energy and Casimir preserving, we also can see that LP
integrator is better than RK4 method and MD method. (In MD methods, we chose the relative
iterative error to be 1071°.) The computations also show that the LP algorithm is the fastest
among the three methods and MD method is the slowest. Their CPU time to computing the
same number of steps is, respectively, 3.729, 7.648, 31.933. All our computings are done on
SGI workstation using the double precision. For the midpoint rule, because of solving nonlinear
equations, the energy and the Casimir function is not well preserving so that the orbit have some
spectral dissipation. If we chose the relative iterative error to be 10~!7 (the digit number needed
for double precision), MD method is also well energy-preserving and Casimir-preserving; but the
method becomes slower.

In Example 2, we consider the motion of heavy top. We assume that the center of mass is
in the z axes; i.e., 71 = 72 = 0. We chose v3 = 1.0, the initial value of z; as (2,3,4), p; as
(0.3,0.4,0.5); the step length is 0.1 for LP and 0.01 for RK4, the step number is 100000. We only
gave (in Figures 12 and 13) the phase trajectories of LP and RK4.

In conclusion, we can say that the Lie-Poisson Integrator is very good for long time tracing
and very well orbit-preserved, which is very important for Celestial mechanics.
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